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An analytical description of some quantum systems in periodic 
external fields and quasistationary systems 
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Department of Physics, Byelorussian State University, Minsk-80, USSR 

Received 27 August 1986, in final form 30 December 1986 

Abstract. The peculiarities of the operator method in solving the Schrodinger equation 
with periodic potentials are discussed. Approximate analytical solutions of the Mathieu 
equation and Scbrodinger equations for a two-level system are found on the basis of the 
operator method. An analogous method is used for the analytical estimation of the 
quasistationary state energy and width. 

1. Introduction 

The operator method (OM)  for the approximate solution of the Schrodinger equation 
in the whole range of Hamiltonian parameters was developed by Feranchuk and 
Komarov (1982,1984). In the present paper we shall use the main ideas of the OM in 
order to solve the Schrodinger equation for specific Hamiltonians which have space 
or time periodicity. 

According to Feranchuk and Komarov (1984), the essential characteristics of the 
OM which define its efficiency in different problems are the following: (i) a special 
choice of the basis set (L!,o’(~,) of the eigenfunctions, which are non-orthogonal in 
general and contain the set of the variational parameters U,, diffeLent for various n ;  
(ii) a definite method of separating the zeroth-order Hamiltonian Ho out of the exact 
operator f i ;  (iii) calculation of the series for eigenfunctions and eigenvalues of fi 
which are uniformly convergent in the whole range of the Hamiltonian parameters. 

In the majority of examples discussed by Feranchuk and Komarov (1982, 19841, 
the transition from coordinate representation to the second quantised form was used. 
In this case the particle-number operator eigenfunctions In, U , )  were chosen as the 
functions I(Ll(nO’(w,,)). In particular, the Mathieu equation eigenvalue problem was 
considered with the help of such an approach. However, the results contained infinite 
sums and did not have a simple analytical form. 

Undoubtedly, the choice of the functions In, U , )  as a full set is not the only possible 
one. In general, this choice is conditioned by the algebraic character of the calculations 
of the OM high-order corrections. Sometimes, however, it is expedient to complicate 
such calculations if the choice of a more adequate basis permits us to improve radically 
the accuracy of the zeroth-order approximation. Such a situation arises in describing 
quantum systems in periodic fields, which we examine in the present paper. In 5 2 we 
shall consider specific features of the OM in solving the Mathieu equation, for which 
detailed quantitative calculations exist (see, for example, Abramowitz and Stegun 
1979). This fact permits us to estimate the accuracy of the approach. 

0305-4470/87/ 123849 + 12$02.50 @ 1987 IOP Publishing Ltd 3849 
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The quasi-energy method is a very handy way of describing quantum systems which 
are in an  external periodic field (see, for example, the review by Zeldovitch (1973) 
and references therein). The problem of the evolution of a two-level system in a 
monochromatic linearly polarised field is a good model for many physical problems. 
The numerical solutions of these problems and  approximate analytical forau lae  for 
quasi-energies in the different limits defined by the large or small values of non- 
dimensional parameters of the system are well known (see, for example, Fainstein er 
a1 (1978) and Finkelstein (1985) and references therein). However, analytical 
expressions for eigenfunctions and quasi-energies of two-level systems which are correct 
with sufficient accuracy in the whole range of the parameters are of great interest 
because these functions and the quasi-energy spectrum are often used as a basis for 
investigating real atomic systems (see, for example, Liaptsev and Zuev 1985). Therefore, 
§ 3 is devoted to deducing the zeroth-order approximation formulae for quasi-energies 
and eigenfunctions of two-level systems on the basis of the OM. It is shown that these 
formulae give a sufficiently accurate solution of the problem. 

In  § 4 we shall show that an  analogous method leads to sufficiently simple formulae 
for real, E ' ,  and imaginary, E " ,  parts of the quasistationary state energies. We prove 
that these formulae give a uniformly fitted approximation for eigenvalues, both in the 
case of exponentially small E" and in the case where E " -  E ' .  

We shall also discuss the regular procedure which permits us to improve the 
zeroth-order approximation for the problem considered in this paper. 

2. Approximate solution of the Mathieu equation 

Let us consider the canonical form of the Mathieu equation, corresponding to the 
Schrodinger equation for a particle with mass m =; in a one-dimensional periodic 
potential field: 

(1) 

$ ( x + 2 7 )  = $ ( X I  $ ( x +  T )  = *$(x). ( 2 )  

(A- E ) $ =  (t2+ h COS 2 ~ -  E)t+!/(x)=(-d'/dx'+ h COS ~ x - E ) $ ( x )  = O .  

We shall consider the eigenvalues E corresponding to the periodic solutions 

Without any additional suppositions about the potential amplitude h we put the 
operator I? into a form similar to the harmonic oscillator Hamiltonian: 

(3) A = P 2 + 2 h  cos' x - h 
and introduce two canonical conjugate operators 

a = j  -id'% cos x a*= j+ i JT i ; cosx .  (4) 
These operators define two basic functions 

I $ ' * ' )  = exp(*JTi; sin x )  U [ $ ( - ) )  = 0 a+l4 '+ ' )  = 0. ( 5 )  
The commutator of the operators a and u t  is more complicated than the analogous 
one for the harmonic oscillator considered by Feranchuk and Komarov (1982). This 
is why they d o  not factorise the Hamiltonian A and the functions (5) are not accurate 
solutions of equation (1). Nevertheless, it is possible to build some set of the basic 
functions $, with their help, which will serve as a foundation for the obi construction. 
Feranchuk and  Komarov (1982, 1984) used a one-parametric unitary transformation 
of the initial creation and annihilation operators in order to consider quantum systems 
more complicated than the harmonic oscillator. This transformation allowed them to 
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introduce the arbitrary parameter w into the basic function set. We shall perform an  
analogous transformation on the operators (4) which corresponds to the following 
substitution of functions: 

(6) $L(*)+ +‘” ,, = exp(*tv sin x )  

where v is a parameter which will be defined later. To construct the whole spectrum 
of periodic solutions of equation ( l ) ,  one has to take into account the wavefunction 
symmetry ( 2 )  and consider the algorithm for calculating the excited states. To provide 
the conditions ( 2 )  it is necessary to use odd and even linear combinations of (6). As 
a result, the approximate normalised periodic solutions of equation ( l ) ,  corresponding 
to the smallest eigenvalues Eo,  E , ,  have the following form: 

1 
I+oJ= ( lo+  1 ) 1 / 2  cosh(4v sin x )  

I IILIJ = ( I o  - 1 ) I / 2  sinh(iv sin x ) .  

Here I o ( v )  is the zeroth-order Bessel function with imaginary argument and the 
normalising and orthogonalisation conditions are defined by the scalar product 
(Abramowitz and Stegun 1979) 

(+m,”l+p,”) = loZn dx ~ : , ” ( x ) $ p , Y ( x )  = . l r L p .  

As will be shown later, the simple analytical functions 1 1 ) ~ ~ )  and I$,,,) are approximate 
representations of the Mathieu functions Ce, and Se, (Abramowitz and Stegun 1979) 
if the parameter v is chosen in an  optimal way. 

The complicated form for the commutators of the operators a and a +  in the present 
case does not permit us to find the excited system states and perturbation operator 
matrix elements purely algebraically, as is done in using the oscillator wavefunctions. 
Nevertheless, one can find without difficulty the necessary quantity of the functions 

of the full set using linear combinations of ( 7 )  multiplied by polynomials over 
powers of cos x using well known orthogonalisations (Tikhonov and Samarsky 1972). 

We emphasise that, in accordance with the OM scheme, the parameter v, will take 
different values for different n. This being so, different functions of the full set I$,,”,,) 
will not in general be orthogonal. The above-mentioned orthogonalisation of the 
wavefunctions with fixed parameter v is necessary to provide a correct symmetry and 
a number of zero points of wavefunctions for excited states. 

We remark that the solution of the Mathieu equation corresponding to non-zero 
quasimomentum k does not have definite parity. Therefore one has to use linear 
combinations of basic functions (6) with variational coefficients for the approximation 
of such a solution. 

of two excited states which 
give an  analytical approximation for the Mathieu functions Ce, and Se,: 

We adduce also the normalised functions I $ 2 y )  and 

1 
cos x cosh(fv sin x )  

IO I ,  =-. 
1 L3v 

[ ( 1 /  v ) l ,  + ; ] I / *  
I*2,”) = 

l + 3 + 1 / v ) 1 1  -?I I ,z  cos x sinh(fv sin x )  

These functions correspond to the eigenvalues E2.3 
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Now let us pass to the choice of the parameter v,. According to Feranchuk and 
Komarov (1984) and rernandez et a /  (1985), one can represent the result of an  operation 
of the Hamiltonian H on the definite wavefunction in the following form: 

m # O  

where A,, is the A operator diagonal part with function I l j l n y )  being the eigenfunction 
for this part with eigenvalue E,(v). The operator V, transforms the function /$n,L, )  

into wavefunctions of different states with numbers n’#  n. According to the OM,  the 
value E,( v,,) determines the zeroth-order approximation E:’ of the precise eigenvalue 
E ,  for a definite choice of the parameter v = v,,. To calculate the high-order approxi- 
mation corrections it is necessary to use perturbation theory with respect to the operator e,. For example, in order to calculate the pth-order correction to EL’’ one should 
take into account the matrix elements of transitions V,, to the states with n ’  differing 
from n for lm 1 s p in the perturbation theory formulae. To account for this circumstance 
we have introduced the arbitrary parameter p into the matrix elements of the operator 
c,, (one has to put /3 equal to unity at the end of the calculation). 

In this case the coefficients CnA of the expansion of the exact state vector 19,) in 
the basic functions I9A3,) 

are defined by the following recurrence system: 

m # O  

where Cnk = E:=, C‘,‘;. The exact eigenvalue is obtained using the expression 

= E,( V ) S , , ( , +  1 C:;;Lm/Jvnn, 
l m l s i  I 

In f 0 

X 

E ,  = 2 E:,’) .  
, = o  

Calculating the OM high-order corrections for the Mathieu equation with the help of 
basis I+,,,) has no principal difficulties. 

A good zeroth-order approximation for Mathieu equation solutions is not a coin- 
cidence. Let us find the first non-zero correction to the energy Eh‘”. According to 
formulae (10) and (11)  this correction is defined by the transition from the ground 
state to the state I $ 4 l , , ) .  The normalised wavefunction l$k;j,) has the following form: 

( 2 / v ) I ,  + 1 - 2 ( 1 +  fJ cos? x 
( 1  + I,)[;+ (12,’ v 2 )  12- (211,’ V +  I)’/(  I”+ I ) ] ’  

coshiiv sin x )  l * : ~ ; : , )  = 

I?= 1 0 - ( 2 / v ) I ,  

(9E;)l9:;,) = 0 k s 3 .  

where 

Then the corrections Eh2’ and are defined by the formulae 
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For example, we obtain Eh2’ = -5.78 x for h = 10 which accounts for -0.001% of 
E r ’  and  I(I~:~( .rr/2,5)) = 2.05 x lo-’. 

We shall not consider the detailed calculations of the high-order corrections because 
the OM zeroth-order approximation provides very high accuracy both for eigenvalues 
and for eigenfunctions of the Mathieu equation and  two-level systems. 

To choose the parameter U, in the OM zeroth-order approximation we use the fact 
that exact eigenvalues of equation (1) d o  not depend on the parameter U introduced 
artificially, i.e. the following condition must be satisfied: 

aE /av  = 0. (12) 
This condition in the zeroth-order approximation gives an  equation for calculation of 
the parameter v,: 

For the ground state ( n  = 0) equation (13) leads to the same result as the variational 
principle on the class of functions I $ o y )  gives. However, it is impossible to consider 
it as a consequence of the variational principle for excited states, because in differentiat- 
ing over the single parameter v, for every n we d o  not take into account the orthogonality 
conditions of the function with all functions corresponding to the index n ‘ <  n. 
In  the ordinary variational solution these conditions demand the introduction of n 
parameters in the trial function for the nth excited state. 

Thus, (9) and (13) lead to two equations for computing the parameter vn and the 
zeroth-order approximation ELo’= E,(v,) of the eigenvalue E,, for every n. The 
approximate wavefunction is determined by the simple formulae (7) and (8) after 
substitution of the solution v, of equation (13). Let us give as an example the 
corresponding equations for the states with n = 0, 1, 2, 3: 

U I : - l * z l ( ~ v ~ I l )  
hoJ = 4 II(2Z/ U - I o )  + (I”* 1)[ I,( 1 +4/ vl) - 210/ U ]  

1 
{*1F&v2+;Io-I l /v  

21,/ v * 1 E2.3 = 

1: - z;+ (2/ V ) I o Z ,  - Qv’ * (2/ V)Z, * Io($v’ - 1) 
”” = (8/ v z ) I :  * Io( 1 4- 16/ U’) - (8/ V*)I:( 1 + 4/ V’) 7 (2/ v)11(3  + 16/ U ’ ) ) ’  

(17) 

The transcendental equations (14)-(17) can be solved in obvious form and the 
dependence Ejp’(h) can be found in the limits h >> 1 and h << 1. For example, one can 
find for the case of n = O  

These results coincide with corresponding asymptotic expansions of the accurate 
eigenvalue “CO( h ) .  

It is not difficult to verify that the main terms of the asymptotic expansions are 
reproduced exactly for other states as well. The characteristic feature of the solutions 
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Table 1. Comparison ofthe exact periodic solution and eigenvalues of the Mathieu equation 
(Abramowitz and Stegun 1979) with the O M  zeroth approximation. 

Exact I O  -5.800 4.48 x 1.335 
Solution 30 -22.513 I 9 3  x io- )  1.550 
uo = 8.331 I O  -5.800 4 . 1 4 ~  1.333 
vll = 14.944 30 -22.513 1 . 7 6 ~  IO- '  1.550 

Exact I O  -5.790 1.75 x l o - '  1.337 
Solution 30 -22.513 1.39 x 1.550 
v I  = 8.370 64 I O  -5.790 1 . 7 0 ~  IO- '  1.337 
u I  = 14.944 164 30 -22.513 1.32 x lo-' 1.550 

h2 E2 Ce, (0, th , )  Ce', ($.ir, ih,j 

Exact I O  1.858 2.57 x I O - '  -3.469 
Solution 30 -8.101 1 . 5 0 ~  -5.764 
u2 = 6.783 55 I O  1.867 2.28 x IO-'  -3.388 
v2 = 13.772 105 30 -8.100 1.17 x lo-* -5.740 

h' E3 W O ,  f h 3 )  Se; ( f ~ ,  fh , )  

Exact I O  2.099 7.33 x lo-'  -3.641 
Solution 30 -8.099 9 . 1 8 ~  -5.766 
u3 = 7.212 IO 2.100 7.09 x I O - '  -3.615 
v3 = 13.7793 30 -8.099 8.06 x lo-, -5.742 

obtained by the OM is their ability to approximate the exact solution in the whole 
range of the coupling constant. That is why the powers of h appearing in the next 
terms of the series (18) are the same as in the accurate asymptotic series but with 
negligible differing coefficients. Table 1 shows the accuracy provided by the functions 
l $ n , v , , )  and E r ' ( h )  for intermediate values of h. 

It should be remarked that during concrete calculations it is convenient to consider 
v as an  independent quantity defining the function E',''(h) in parametric form. It 
permits one to avoid solving equation (15) or (17) for every fixed h but use i t  to 
calculate h(  v). The results listed in table 1 show that rather simple formulae such as 
(14)-( 17) determine eigenvalues of the Mathieu equation with an  accuracy - 
Correct asymptotic behaviour and symmetry properties of simple functions such as 
(7) and (8) can also provide enough accuracy for many practical calculations with 
Mathieu functions (see table 1). 

3. Quasi-energies and wavefunctions of the two-level system 

Let us consider the Schrodinger equation for a two-level atom in a periodic lineariy 
polarised field. For this we shall use the notation of the paper of Fainstein et al (1978): 
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Here a, are the Pauli matrices, 8 is the quasi-energy, the value E determines the 
distance between unexcited atom levels, the parameter F proportional to the transition 
dipole matrix elements determines the amplitude of the atom interaction with external 
field and  w is the frequency of this field. The method, used previously to find the 
approximate solution for the Mathieu equation can be used In the case defined by 
equation (19). 

However, it is necessary to use functions different from (6) to construct the state 
vector basic set containing the arbitrary parameter A. In the case considered one can 
choose the basic functions in the following spinor form: 

I$*) = exp(*iA sin T ) X *  x+=(;) x-=(;). 

Let us build a linear combination of the spinors (20) for lower quasi-energetic zones 
%,,,(n = 1,2)  in such a way that it could reproduce the precise solution of equation 
(19) in the quasiclassical limit ( F > > l )  and in the limit of weak coupling (F<< 1 ) .  
Wavefunctions of the form ( T ) )  = Clxl + C2x2 eiT satisfy the conditions 

(21)  

where Cl,2 are arbitrary coefficients. The other branches of the quasi-energy spectrum 
can be obtained by the functions containing polynomials over the powers of the 
function exp(i7) as factors before the spinors in (21). The orthogonalisation of these 
functions must be fulfilled, taking into account the scalar production definition 
(Zeldovich 1973) 

2n 

((k ( 7))  + ~ p  ( T,)) = Io d d CL, ( 7) )  $Lp ( 7)). 

Later we shall only discuss the states corresponding to the quasi-energies %,,. Let 
us now separate from fi the part which is diagonal relative to the function (21). As 
a result we obtain the following system for determining the coefficients Cl,>: 

8C, = f E  ($d2A)C1 + i9,(2A)C2) +$( F - wh ) C2 

8C2 = wC, - iE($,(2A )Cz + i$,(2A ) C , )  -$( F - wh )C, 
(22)  

where yo and 21 are Bessel functions with real argument. 

the zeroth-order approximation for the quasi-energy: 
The condition of existence of the non-trivial solution of the system (22)  defines 

AI,*" %':Yi/E = ~ ( W / E * ( [ ~ / E - ~ , ( ~ A ) ] * + [ W A / E  - F / E  -21(2A)]2}1'2)  (23)  

if the parameter A is calculated by means of the equation arising from the condition 
d%,,(X )/ah = 0, or 
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The normalised wavefunctions of the system are defined by the simple analytical 
formulae 

I$:%))= C I X l ( T ) +  C2X2(.) eiT 

A = (2A -20(2A))’+ (9,(2A) + F /  E - w A /  E)’. 
Equations (23)-(25) reproduce correctly the main terms of the well known asymptotic 
expansions for quasi-energies in the corresponding limits. For example, we can find 
from equation (24) in the limit F >> w 

A ~--+-9~(:) F E  +O[ (:)”*I 
o w  

so that 
E 2 I / ’  

2 
8 -- - COS(XO-~t . i r )  

In  the resonance limit F << E, w = E we find 

A = F / ( w  + E )  81,z;o=;{w * [ ( U  -E)z+tF2]”’) 
that also coincides with the known result (Zeldovich 1973). In addition, the formulae 
obtained give sufficient accuracy in the intermediate range of the Hamiltonian para- 
meter. This is demonstrated by figure 1, where the curves obtained by means of the 
analytical formulae (23) and (24) are compared with the results of numerical calcula- 
tions carried out by Fainstein et a1 (1978). 

L 

0 1 2 3 L 5 
F I E  

Figure 1. Comparison of the numerical calculation of quasi-energies d,, of Fainstein er 
a /  (1978) (broken curve) and  OM zeroth approximation S::’ for the same values (full  
curve) as  a function of the external field magnitude. The  quasi-energies are  measured in 
units of E. 
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4. The estimation of the quasistationary state energy 

Let us consider another group of problems connected with calculating the real, EL, 
and imaginary, E :, parts of the Hamiltonian eigenvalues E, for quasistationary states 
(QS). The most widespread method of analytical estimation for these quantities, based 
on the quasiclassical approximation (see, for example, Sanchez and Bejarano 1986), 
is suitable only in the range of exponentially small values of E : .  On the other hand, 
the precise numerical computations of E ;  and E :  based on the complex coordinate 
rotation method (Farrelly and Reinhardt 1983) demand a great deal of calculation, 
especially in the range E ; > > E : .  This is why the method which allows us to obtain 
sufficiently accurate estimations for E, for any correlation between E ; and E : and a 
comparatively small volume of calculations is of great interest for different applications. 

Let us take a simple example of the system with Hamiltonian 

fi = S(p^’+ x’) - Ax4 A > O .  ( 2 7 )  

Its spectrum consists of QS. As is generally known, in this case the quantity E :  
corresponds to an essential singularity for A + 0, concerned with the exponentially 
small potential barrier penetration. Firstly, let us find eigenfunctions of the operator 
(1) with the help of OM in the simple form discussed by Feranchuk and Komarov 
(1982) .  For this purpose one has to pass to the second quantised representation 

i = ( l / & ) ( a + + a )  p* = i(+w)”’(u+ - a )  [aa’]=I ( 2 8 )  

supposing that the parameter w may be complex valued, which is equivalent to a 
complex-valued coordinate rotation. As has been shown by Feranchuk and Komarov 
( 1984), the analytical continuation of the state vector and creation and annihilation 
operators on complex-valued w is carried out by the following operator: 

2 ( w ,  1 )  = exp[+(a:’- a:) In w ]  ( 2 9 )  

where a ,  and a :  are the operators corresponding to the parameter w = 1 

a = R - ‘ a , R  Io, w )  = fib, l ) l O ,  1) a,10, 1) = 0. ( 3 0 )  

I t  should be remarked that both the operators a,  and a :  and the vectors (w,O1 and 
10, w) are not Hermitian conjugate with each other for an arbitrary complex-valued w. 
In particular, the expression 

( 3 1 )  

is satisfied. In the OM zeroth-order approximation we find the following equation for 
the eigenvalues of the operator ( 1 )  (Feranchuk and Komarov 1982): 

( 3 2 )  

(10, U))+ = { ( U ,  Ol)* 

E!,’)=(w, nlf i ln,  U )  =:(w + l / w ) ( 2 n  + 1) - ( 3 A / 4 w 2 ) ( 1  + 2 n  + 2 n ’ )  

( w 3 - w ) ( 2 n  + 1 ) + 6 A ( l + 2 n  + 2 n 2 )  = O .  

the parameter w being defined for every n by the equation aE!,’)/aw = 0, i.e. 

(33) 

As has been shown by different examples by Feranchuk and Komarov (1982) ,  the OM 

zeroth-order approximation allows one to find eigenvalues with an accuracy - 1 o/o. 

That is why it is possible to expect that equations ( 3 2 )  and ( 3 3 )  give a sufficiently good 
evaluation of energy for A > A b  when EK30.01EL. In fact, the complex-valued sol- 
utions of equation ( 3 3 )  satisfying the condition U ’ >  0 appear for values of A satisfying 
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the inequality 

2 n + l  
9 & ( 2 n 2 + 2 n + l )  

= A h .  A >  (34) 

Table 2 ( a )  compares the results of calculations on the basis of equations (32) and (33) 
for A = 0.1, satisfying condition (34), with the exact values of E, obtained numerically 
(Farrelly and  Reinhardt 1983). The results show that in the range A > Ah the OM 

zeroth-order approximation provides the same accuracy of the QS energy calculation 
as for the stationary states ( A  < 0 )  discussed by Feranchuk and Komarov (1982). In 
order to define more exactly the real and imaginary parts of E?' we should take into 
account the second-order correction calculated for w = wb+ io;; by the formulae 
obtained by Feranchuk and Komarov (1982). For example, we find for the ground 
state E r ' +  EL2'= 0.397+i0.046, where A =0.1. This result can be compared with the 
exact value of Eo given in table 2 (a ) .  Calculation of the O M  high-order corrections 
demands numerical computation and it is not the purpose of this paper to perform it. 

The aim of the paper is to obtain simple analytical formulae permitting us to 
estimate eigenvalues in the zeroth-order approximation. Due to this fact we use the 
method developed in the previous sections in the range A < A h .  For that we introduce, 
as in solving the Mathieu equation, two operators 

and use solutions of the equation A*+b"=O, in which an  arbitrary parameter v will 
be introduced for creation of the zeroth-order appr?ximation basic functions. To 
estimate the ground-state eigenvalue of the operator H we choose the eigenfunction 
zeroth approximation in the form of a linear combination of the functions 4;;': 

(exp[i( v/A)(2Ax2- 1)3/*1 

The coefficients of are chosen in such a way that they contain only the diverging 
wave for x+co  and are continuous with the first and  the second derivatives at the 

Table 2. ( a  Comparison of the results of calculations of the eigenvalues of the Hamiltonian 
H = ( p ' + . x ' ) / 2 - A . x 4  on  the basis of formulae (31)  and  (32) with the exact values of E,, 
obtained by Farrelly and  Reinhardt (1983). ( b )  Comparison of the outcome of the 
calculations of E r '  using formula (38 )  with the exact values of € , , ( A  ). 

~ _______ ~~~ 

( a )  A=0.1 F E:: Re E:: '  Im E::! 
-~ 

n = o  0.397 0.045 0.384 0.042 
n = l  1.096 0.340 1.074 0.353 
n = 2  1.753 0.969 1.769 0.97 1 

( b )  A E :i Re €::"(A) E ;  Im € , : " ( A )  

0.480 7.8 x IO-' 8.2 x 0.025 0.479 
0.03 0.474 0.475 6.2 x I O - '  6.8 x IO- '  
0.05 0.450 0.456 3 3 x lo-'  4.2 x lo-'  
0 1  0.397 0.402 4.5 x 10 7.4x lo-' 
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point x = ( 1/2A)’/’. The vectors I+,,) for the excited states can be represented as a 
product of the Hermite polynomial H[(v/3)’”x] and the vector E f ’ j v )  in the 
zeroth approximation is defined from the equation 

(37) ( + O ” l ( f i  - ~ b O ’ ( V ) ) I + O ” )  = 0. 

By analogy with (31) the vector ( + o u l  for complex-valued v is defined by the following 
expression: 

(+oOl= {190”>+)*. 
As a result, equation (37) assumes the following form: 

1 t dt  1-36u2 3u 

42A J 1 - t ’  2 4A t 
4(v) == j’ = { i [ exp( t3)(-  ? ’ ( I -  t ’ ) + -  (2t2- 1) - E o  

2v 1-36v2 31, 
-exp( -1 t 3 ) ( -  4A t ’ ( 1 -  t2)--(2t’- t l ) - E o  

1 - 3 6 ~ ’  +- 
4A 

t ( 1 - t ’ ) - ~ ~  += =exp 1 JiA low 4; ::2 

1 - 3 6 ~ ’  3i v 
x -  z’(1+z2)+-(2z2+1)-E0 ( 4A Z 

with the parameter u defined by the condition a E / a v  = 0. 
Since equations (32) and (33) provide a sufficiently good approximation for E ,  for 

A aO.1, we consider (38) for the case of A 6 0.1 only (i.e. A << l) ,  when it is essentially 
simplified and permits us to find E f ’ ( v )  in the obvious form 

1 3  A 
24v 2 48v” 

F(v)=-+- (39) 

The solution of the equation d E f ’ / d v  = 0 gives 

yo= v , ( A ) = % ( I - $ ~ ) +  . . .  
and as a result we obtain the following formula for the ground-state energy: 

We note that the parameter vo contains the correction Av-exp(-1/3A). However, if 
we put vo into equation (39), the change of energy E r ’  conditioned by this correction 
is proportional to ( A V ) ’  because F’( vo) = 0 by definition. The outcome of the calculation 
by formula (39) is compared with the exact values of & ( A )  in table 2(b),  which shows 
that the asymptotic formula (40) gives a sufficiently good approximation for Eo(A)  in 
the range of A < A,,, which can be improved upon taking into account subsequent terms 
in the expansion of formula (37) over powers of A l l 3 .  
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5. Conclusion 

The results obtained in the present paper indicate the wide possibilities appearing in 
the use of the operator method for solving the Schrodinger equation with a periodic 
potential in space or time. We believe that the method described here can be used for 
investigation of physical systems with Hamiltonians outside the limits of the particular 
examples discussed here. At the same time, we realise that the empirical computational 
procedures considered here demand serious mathematical substantiation of conver- 
gence and research into the limits of their applicability. 
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